Updated Inventory of Titan Organics

Michael J. Malaska

Jet Propulsion Laboratory / California Institute of Technology

Photochemical production

x Time

?

Observed volume

Coauthors:

Rosaly Lopes¹
Alex Hayes²
Ashely Schoenfeld³
Tiffany Verlander⁴
Meghan Florence¹
Sam Birch²
Alice Le Gall⁵
Anezina Solomonidou⁶
Jani Radebaugh⁷
Ralph Lorenz⁸

¹ Jet Propulsion Laboratory / Caltech.

² Cornell University

³ University of California Los Angeles

⁴ University of Oklahoma

⁵ LATMOS/IPSL, UVSQ Université Paris-Saclay, France.

⁶ European Space Agency, Madrid, Spain

⁷ Brigham Young University

⁸ Johns Hopkins University Applied Physics Lab

OrganicWorldTitan

Mapping and identification of materials consistent with organic units [→spatial area] [1]

Terrain classes Areal% [2]

 Plains
 65.05%

 Dunes
 17.48%

 Mountains
 14.09%

 Lakes
 1.49%

 Labyrinths
 1.46%

 Craters
 0.42%

Global map of SAR-mapped terrain units colorized by likely composition

3000 km

Microwave emissivity consistent with:

Organics

Not sure

Water ice

[1] Malaska et al., DPS (2016).

[2] Lopes et al., submitted.

Method of estimate

Area x thickness = volume

Organic Area **Thickness Organic-rich Organic-poor** Rich scenario Lean scenario Lo Hi

Organic inventory on Titan: Plains

Plains cover 65% of Titan Many types of plains

Undifferentiated Plains dominant This unit covers 19.5% of Titan

Undifferentiated plains high emissivity → likely organic

Global map of SAR-mapped undifferentiated plains

3000 km

Minimum thickness would be minimum emissivity cover depth = 1 m What is maxmum estimate that is grounded in observations?

How do we estimate the thickness of the plains?

One approach:

Use observations of steep-sided empty lakes
Assume they all formed from sinkhole dissolution through an organic layer
Maximum thickness is observed empty basin depth

Maximum estimate

Collapse to sinkhole lake (steep sided empty basin)
Depth of basin = minimum thickness

Determining depth from surrounding terrain of empty lake basins **Example with altimetry (see: Hayes et al., 2017)**

Altimetry data (Corlies et al., 2017)

Alitmetry error (Corlies et al., 2017)

Unnamed lacuna 63 km SW of Atitlán Lacus (68.03°N, 240.4°W)

Unannotated SAR

Plains deposit depths

Possible trend of shallower depths at lower mid-latitudes [1]

Minimum case (mid lat depth)

Titan Plains Units Inventory – terrain unit types

		Areal coverage	Effective depth	Organic rich	Organic poor
	Plains unit	[E6 km ²]	[Hi-Lo] [m]	estimate [E5 km ³]	estimate [E5 km ³]
Thick organic	Undifferentiated	16.2	100 – 1	16.2	0.2
	Scalloped	2.1	100 – 1	2.1	0.02
	Dark irregular	1.1	100 – 1	1.1	0.01
	Undivided dark	3.3	100 – 1	3.3	0.03
Th	Undivided	20.2	100 – 1	20.2	0.2
	Variable featured	9.5	100 – 0.1	9.5	0.01
25	Dissected	0.1	100 - 0.1	0.1	0.0001
	Bright lineated	0.08	100 – 0.1	80.0	8000.0
ic	Bright streak-like	0.9	100 – 0	0.9	0
yan	Bright alluvial	0.1	1 – 0	0.01	0
organic organic	Gradational	0.5	0	0	0
Thin			Plains	total	
			Rich	scenario Lean	scenario
			53.	5E5 km³ 0.4	E5 km ³

Organic inventory on Titan: Dunes

2nd most dominant terrain class on Titan (mostly exist as linear dune seas or ergs) Area coverage: 17.48% Radiometrically high emissivity Consistent with organics

Surface area: 14.5E7 km²

Effective thickness: 30 m – 12 m from [1]

Belet Sand Sea, [9°S, 266°W]

Dunes total

Rich scenario
4.4E5 km³

Lean scenario 1.8E5 km³

Organic inventory on Titan: Mountains

High backscatter; rugged **Very low microwave emissivity Consistent with water ice / volume scatter**

Assume thin < 1m to zero organic cover

Surface area: 14.09% total surface

 $= 11.6 E6 km^2$

Effective thickness: 1 m – 0 m

Major terrain unit, but not organic reservoir

Gandalf Colles, [14.3°N, 209.7°W]

Mountains total Rich scenario Lean scenario 0.1E5 km³

 0 km^3

Organic Lake inventory

Minor unit on Titan: 1.49% of total surface

Hydrocarbons and dissolved N²

Use volume estimate from Hayes et al. [1] 0.7 E5 km³ liquid

Assume average composition of 30% ethane/hydrocarbon, 10% N₂, rest condensed methane.

0.07E5 km³ dissolved N₂ (ignore)
0.44E5 km³ methane (condensed)
0.19E5 km³ ethane (from production)

Ontario Lacus, [72°S, 185°W]

Lakes total
Rich scenario & Lean scenario
0.6E5 km³
0.2E5 km³ ethane

Organic inventory on Titan: Labyrinths

Minor unit on Titan, but thick Areal coverage: 1.46%

High microwave high emissivity Consistent with organic plateaux

Locally elevated (500 m) and dissected Account for terrain dissection/removal

Surface area: 1.2E6 km²

Average elevation of plateaux: 277 m [1]

Average %removed: 56%

Effective thickness: 122 m

Estimated volume: 1.5E5 km³)

SARTopo and Katain Labyrinthus, [52.4°N, 348.9°W] Katain is approximately 630 m above average local terrain

Labyrinth total
Rich scenario & Lean scenario
1.5E5 km³

Organic inventory on Titan: Craters

Very minor unit on Titan Areal coverage: 0.42%

Very Low microwave emissivity
Consistent with volume scattering ice

Treat crater rim, central peak, crater ejecta, crater fill 1 as water ice (1 m – 0 m thick organics)

Treat crater ejecta, crater fills 2 – 4 as Variable featured plains (25 – 1 m thick organics)

Afekan Crater [25.7 N, 160 W]

Craters total

Rich scenario Lo

0.01E5 km³

Lean scenario 5 km³!!!

Organic deposit totals

<u>Terrain classes</u>	Rich scenario volume [E5 km³]	Lean scenario volume [E5 km³]
Plains	53.5	0.4
Dunes	4.4	1.8
Mountains	0.1	0
Lakes	0.6 (0.2 ethan	e) 0.6 (0.2 ethane)
Labyrinths	1.5	1.5
Craters	0.01	0
TOTAL Organics	60.3E5 km ³	4.4E5 km ³
TOTAL Solid orga	anics 59.6E5 km ³	3.8E5 km ³

Global average organic depth: Solids and liquids

	Organic-rich <u>scenario</u>	Organic-lean <u>scenario</u>
TOTAL Solid organics	59.6E5 km ³	3.8 km ³
Average solid organic depth	71.8 m	4.4 m

TOTAL ethane	0.2E5 km ³	0.2E5 km ³
Average ethane depth	0.2 m	0.2 m

Comparison with models

1 Gyr accumulation estimate on Titan's surface from literature models

Conclusions and Implications

Organic amount in plains units is biggest "wild card" estimate

Organic-rich scenario requires at least 1 Gyr solids production in most aggressive model

Organic-lean scenario can be done ca. 1 Gyr production in all models

Much more solids than liquids vs. predictions Ethane is being underproduced (or secreted away)